防二次感染?维护免疫力不能缺少维生素A!******
目前,全国各地陆续迎来感染高峰,有的人症状相对比较轻微,而有的人则戏称遭受到“新冠十大酷刑”,症状十分严重。感染症状的轻重,除了与毒株有关外,与每个人的免疫力强弱不同也有关。免疫力强的人更不容易出现危重症,痊愈后出现后遗症的概率也相对小。而维护免疫力,促进康复,避免二次感染,都离不开维生素A的帮助。
维生素A有促进上皮细胞的生长和分化的作用,对促进黏膜细胞增生,维持黏膜屏障的完整性有重要作用。
而黏膜是免疫系统的第一道防线,保持体内维生素A充足,有助于加固这道防线。
维生素A的食物来源有两类:一是植物性的,二是动物性的。
植物性食物中,绿色或黄色蔬果如菠菜、韭菜、豌豆苗、苜蓿、青椒、红薯、胡萝卜、南瓜、杏、芒果中含β-胡萝卜素较多,进入体内后会转化成维生素A。
动物性食物中,动物肝脏、鱼肝油、牛奶及蛋类中含量较高,是维生素A的良好来源。
成人维生素A的需要量为男性800微克RAE/天,女性700微克RAE/天。
补充维生素A,给大家推荐以下三种食物——
推荐一:猪肝
猪肝维生素A含量为4972微克RAE/天,含量非常丰富。
要注意的是,用爆炒的方法烹动物内脏存有一些风险,因为爆炒的过程中可能加热不够充分,没有足够高的温度和时间杀灭肝脏里的寄生虫,而用煮的方法相对更安全。煮的时间尽可能延长,要把猪肝煮烂,烂一点还有利于消化吸收。
如果喜欢炒食,切忌“快炒急渗”,更不可为求鲜嫩而“下锅即起”。要做到煮熟炒透,使猪肝完全变成灰褐色,看不到血丝才好,以确保食用安全。
在食用量上,也不要过多食用猪肝,以免维生素A中毒,一般成人可以每月食用动物内脏2-3次,每次25克(生重)。由于猪肝的胆固醇和嘌呤含量比较高,有忌口的慢性病患者慎吃。
推荐二:菠菜
菠菜富含胡萝卜素,同样可以在体内转化为维生素A。
食用菠菜,烹调前注意一定要焯水1分钟,这样草酸可以被焯掉60%-70%。
关于吃菠菜的量,建议大家一周不超过三次,一般情况下一次可以吃200-300克(生重)。一顿饭炒一盘菠菜,然后一周隔一两天吃一两次,可以热炒,可以煮,可以焯水后凉拌,本着清淡的原则去做都可以。
推荐三:胡萝卜
胡萝卜是胡萝卜素的良好来源。烹调时用油作为载体,能使胡萝卜的营养吸收率更高。
一般来说,炒一盘胡萝卜最大的用油量约10毫升,也就是一汤勺的量。如果不用油的话,同餐有肉类等含有脂肪的食物也可以。
文/于康(北京协和医院临床营养科教授)
◎知识链接◎
补充维生素C,别只知道柠檬这一种了!
虽然对维生素C能否防治感冒尚无确证,但毋庸置疑的是,对于维生素C摄入不足的人群来说,补充维生素C的确有提高机体免疫力的作用。如果长期缺乏维生素C,会让免疫系统的重要细胞——吞噬细胞的功能受到影响,人更容易感冒,也更容易出现倦怠、全身乏力等情况。
疫情期间,朋友们更要注意维生素C的补充。对于一般成人来说,维生素C的日常摄入量为100毫克/天,预防非传染性慢性病摄入量为200毫克/天。
如果饮食中的维生素C摄入不足,可以在医生指导下,通过服用维生素C补充剂来补充。
不过,补充维生素C并非越多越好。超大量服用维生素C不仅不会提高吸收率,还有可能增加患结石的风险。因此,服用补充剂时要遵医嘱,切勿超量。
补充维生素C最好的办法是吃蔬菜水果,只要是新鲜的,都是维生素C的良好来源。越新鲜,维生素C保留得越好。水果方便食用,不用加热,维生素C不会额外损失,下面推荐三种富含维生素C的水果。
第一种:鲜枣
在常见的水果中,鲜枣的维生素C含量名列前茅,高达243毫克/100克,差不多是苹果的60倍,梨和西瓜的40倍,桃的30倍,柠檬的10倍。
吃鲜枣时注意,一定要慢慢地咀嚼着吃,要把外面的皮嚼碎嚼烂了再吃进去。否则,由于枣皮在胃肠道消化较慢,如果吃得太快,可能会引起胃肠道不适。
在食用量上,一般成人可以每天用手抓一小把,抓多少就吃多少。鲜枣含糖量比较高,糖尿病患者慎吃。
第二种:猕猴桃
猕猴桃的维生素C含量高达62毫克/100克,吃一个普通大小的猕猴桃,可以满足一天维生素C需要量的1/2。普通人一天吃约400克的绿叶菜再加一个猕猴桃,基本就满足了一天的维生素C摄入量了。
除了富含维生素C,猕猴桃还含有较高的膳食纤维和维生素E、K等,对防治便秘、减肥和美容有一些帮助。
常见的猕猴桃有红心、黄心、绿心三种,很多朋友不知道哪种猕猴桃营养价值更高,其实都差不多,三种猕猴桃营养价值差别不大,大家按照喜好选择即可。
第三种:草莓
草莓酸酸甜甜,被称为“果中皇后”,深受大众的喜爱。实际上,草莓不仅口感美味,营养价值也特别好。
每100克草莓中含58.8毫克维生素C,远远超过苹果、梨等水果。草莓还含有丰富的β-胡萝卜素,β-胡萝卜素是合成维生素A的重要物质,具有维持正常夜视力、保护皮肤等多种作用。
草莓果质娇嫩,不易洗净,建议在自来水下用流动水冲洗30秒,浸泡几分钟,然后再用流动水冲洗一下。
文/于康(北京协和医院临床营养科教授)
(北京青年报)
科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)